MetaTrader 4 - Indicadores Médias Móveis, MA - indicador para MetaTrader 4 O Indicador Técnico de Média Móvel mostra o valor médio do preço do instrumento para um determinado período de tempo. Quando se calcula a média móvel, uma média do preço do instrumento para este período de tempo. À medida que o preço muda, sua média móvel aumenta ou diminui. Existem quatro tipos diferentes de médias móveis: Simples (também conhecido como Aritmética), Exponencial, Suavizado e Linear Ponderado. As médias móveis podem ser calculadas para qualquer conjunto de dados seqüenciais, incluindo preços de abertura e fechamento, preços mais altos e mais baixos, volume de negociação ou quaisquer outros indicadores. É freqüentemente o caso quando se utilizam médias móveis duplas. A única coisa em que médias móveis de diferentes tipos divergem consideravelmente umas das outras, é quando os coeficientes de peso, que são atribuídos aos dados mais recentes, são diferentes. No caso de estamos falando de simples média móvel, todos os preços do período em questão, são iguais em valor. As Médias Mínimas exponenciais e Lineares ponderadas atribuem mais valor aos preços mais recentes. A maneira mais comum de interpretar a média móvel de preços é comparar sua dinâmica com a ação de preço. Quando o preço do instrumento sobe acima de sua média móvel, um sinal de compra aparece, se o preço cai abaixo de sua média móvel, o que temos é um sinal de venda. Este sistema de negociação, que se baseia na média móvel, não é projetado para fornecer entrada no mercado direito em seu ponto mais baixo, e sua saída direita no pico. Ele permite agir de acordo com a seguinte tendência: comprar logo após os preços atingem o fundo, e vender logo após os preços atingiram seu pico. Simples, ou seja, a média móvel aritmética é calculada pela soma dos preços de encerramento do instrumento ao longo de um certo número de períodos únicos (por exemplo, 12 horas). Este valor é então dividido pelo número de tais períodos. SMA SUM (CLOSE, N) N Onde: N é o número de períodos de cálculo. Média Móvel Exponencial (EMA) A média móvel suavizada exponencialmente é calculada adicionando a média móvel de uma determinada parcela do preço de fechamento atual ao valor anterior. Com médias móveis exponencialmente suavizadas, os preços mais recentes são de maior valor. P-porcentagem de média móvel exponencial será semelhante a: Onde: FECHAR (i) o preço do encerramento do período atual EMA (i-1) Exponencialmente Movendo Média do período anterior encerramento P a percentagem de utilização do valor do preço. Média Móvel Smoothed (SMMA) O primeiro valor desta média móvel suavizada é calculado como a média móvel simples (SMA): SUM1 SUM (CLOSE, N) A segunda e as médias móveis subsequentes são calculadas de acordo com esta fórmula: Onde: SUM1 é o Soma total dos preços de fechamento para N períodos SMMA1 é a média móvel suavizada da primeira barra SMMA (i) é a média móvel suavizada da barra atual (exceto a primeira) CLOSE (i) é o preço de fechamento atual N é o Período de suavização. Média Móvel Ponderada Linear (LWMA) No caso da média móvel ponderada, os dados mais recentes têm mais valor do que os dados iniciais. A média móvel ponderada é calculada multiplicando cada um dos preços de fechamento dentro da série considerada, por um determinado coeficiente de ponderação. LWMA SUM (Close (i) i, N) SOMA (i, N) Onde: SUM (i, N) é a soma total dos coeficientes de peso. As médias móveis também podem ser aplicadas aos indicadores. É aí que a interpretação das médias móveis dos indicadores é semelhante à interpretação das médias móveis de preços: se o indicador se eleva acima da média móvel, isso significa que o movimento do indicador ascendente deverá continuar: se o indicador cair abaixo da sua média móvel, Significa que é provável que continue indo para baixo. Aqui estão os tipos de médias móveis no gráfico: Média Móvel Simples (SMA) Média Móvel Exponencial (EMA) Média Móvel Smoothed (SMMA) Média Móvel Ponderada Linear (LWMA) Média Móvel Exponencial - EMA BREAKING DOWN Média Móvel Exponencial - EMA Os 12 - e EMAs de 26 dias são as médias de curto prazo mais populares e são usadas para criar indicadores como a divergência de convergência média móvel (MACD) eo oscilador de preços percentuais (PPO). Em geral, as EMA de 50 e 200 dias são usadas como sinais de tendências de longo prazo. Traders que empregam análise técnica encontrar médias móveis muito útil e perspicaz quando aplicado corretamente, mas criar havoc quando usado de forma inadequada ou são mal interpretados. Todas as médias móveis normalmente utilizadas na análise técnica são, pela sua própria natureza, indicadores atrasados. Conseqüentemente, as conclusões tiradas da aplicação de uma média móvel a um gráfico de mercado específico devem ser para confirmar um movimento de mercado ou para indicar sua força. Muitas vezes, quando uma linha de indicadores de média móvel fez uma alteração para refletir uma mudança significativa no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar este dilema em certa medida. Porque o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação de preço um pouco mais apertado e, portanto, reage mais rápido. Isto é desejável quando um EMA é usado para derivar um sinal de entrada de negociação. Interpretando a EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha de indicador EMA também mostrará uma tendência de alta e vice-versa para uma tendência de baixa. Um comerciante vigilante não só prestar atenção à direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, à medida que a ação de preço de uma forte tendência de alta começar a se nivelar e reverter, a taxa de mudança da EMA de uma barra para a próxima começará a diminuir até que a linha de indicador se aplana ea taxa de mudança seja zero. Devido ao efeito retardado, por este ponto, ou mesmo algumas barras antes, a ação do preço deve já ter invertido. Portanto, segue-se que a observação de uma diminuição consistente da taxa de variação da EMA poderia ser utilizada como um indicador que pudesse contrariar o dilema causado pelo efeito retardado das médias móveis. Usos comuns do EMA EMAs são comumente usados em conjunto com outros indicadores para confirmar movimentos significativos do mercado e para avaliar a sua validade. Para os comerciantes que negociam intraday e mercados em rápido movimento, o EMA é mais aplicável. Muitas vezes os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intraday pode ser a negociação apenas a partir do lado longo em um gráfico intraday. Exploring A Volatilidade Média Móvel Ponderada Exponencialmente é a medida mais comum de risco, mas Ele vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para medir o risco futuro.) Usamos os dados reais do estoque do Google para computar a volatilidade diária com base em 30 dias de dados de estoque. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel exponencialmente ponderada (EWMA). Histórico vs. Volatilidade implícita Primeiro, vamos colocar esta métrica em um pouco de perspectiva. Há duas abordagens gerais: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é um prólogo que medimos a história na esperança de que ela seja preditiva. A volatilidade implícita, por outro lado, ignora a história que resolve pela volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que implicitamente, uma estimativa consensual da volatilidade. Se focarmos apenas as três abordagens históricas (à esquerda acima), elas têm duas etapas em comum: Calcular a série de retornos periódicos Aplicar um esquema de ponderação Primeiro, nós Calcular o retorno periódico. Isso é tipicamente uma série de retornos diários onde cada retorno é expresso em termos continuamente compostos. Para cada dia, tomamos o log natural da razão dos preços das ações (ou seja, preço hoje dividido pelo preço de ontem, e assim por diante). Isso produz uma série de retornos diários, de u i para u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando a Volatilidade para Avaliar o Risco Futuro), mostramos que, sob algumas simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Note que isto soma cada um dos retornos periódicos e depois divide esse total pela Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos quadrados. Dito de outra forma, cada retorno ao quadrado é dado um peso igual. Portanto, se alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples é algo como isto: O EWMA Melhora na Variância Simples A fraqueza desta abordagem é que todos os retornos ganham o mesmo peso. O retorno de ontem (muito recente) não tem mais influência na variância do que nos últimos meses. Esse problema é corrigido usando-se a média móvel exponencialmente ponderada (EWMA), na qual retornos mais recentes têm maior peso na variância. A média móvel exponencialmente ponderada (EWMA) introduz lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno ao quadrado é ponderado por um multiplicador da seguinte forma: Por exemplo, RiskMetrics TM, uma empresa de gestão de risco financeiro, tende a usar um lambda de 0,94 ou 94. Neste caso, o primeiro Mais recente) é ponderado por (1-0.94) (. 94) 0 6. O próximo retomo ao quadrado é simplesmente um lambda-múltiplo do peso anterior neste caso 6 multiplicado por 94 5.64. E o terceiro dia anterior peso é igual a (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser menor que um) do peso dos dias anteriores. Isso garante uma variância que é ponderada ou tendenciosa em direção a dados mais recentes. (Para saber mais, consulte a Planilha do Excel para a Volatilidade do Google.) A diferença entre simplesmente volatilidade e EWMA para o Google é mostrada abaixo. A volatilidade simples pesa efetivamente cada retorno periódico em 0.196, como mostrado na coluna O (tivemos dois anos de dados diários sobre os preços das ações, ou seja, 509 retornos diários e 1509 0.196). Mas observe que a Coluna P atribui um peso de 6, então 5.64, então 5.3 e assim por diante. Essa é a única diferença entre a variância simples e EWMA. Lembre-se: Depois de somarmos toda a série (na coluna Q) temos a variância, que é o quadrado do desvio padrão. Se queremos a volatilidade, precisamos nos lembrar de tomar a raiz quadrada dessa variância. Sua significativa: A variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para detalhes). Aparentemente, volatilidade Googles estabeleceu-se mais recentemente, portanto, uma variância simples pode ser artificialmente elevada. A variação de hoje é uma função da variação dos dias de Pior Você observará que nós necessitamos computar uma série longa de pesos exponencial declinando. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que a série inteira convenientemente reduz a uma fórmula recursiva: Recursivo significa que as referências de variância de hoje (ou seja, é uma função da variação de dias anteriores). Você pode encontrar esta fórmula na planilha também, e produz o mesmo resultado exato que o cálculo de longhand Diz: A variância de hoje (sob EWMA) iguala a variância de ontem (ponderada por lambda) mais o retorno ao quadrado de ontem (pesado por um lambda negativo). Observe como estamos apenas adicionando dois termos juntos: ontem variância ponderada e ontem ponderado, retorno ao quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como o RiskMetrics 94) indica um declínio mais lento na série - em termos relativos, vamos ter mais pontos de dados na série e eles vão cair mais lentamente. Por outro lado, se reduzimos o lambda, indicamos maior decaimento: os pesos caem mais rapidamente e, como resultado direto da rápida decomposição, são usados menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar com sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque ea métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variância historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variância simples é todos os retornos obter o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo é diluído por dados distantes (menos relevantes). A média móvel exponencialmente ponderada (EWMA) melhora a variância simples atribuindo pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso a retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite o Bionic Turtle.) Uma oferta inicial sobre os ativos de uma empresa falida de um comprador interessado escolhido pela empresa falida. De um pool de licitantes. O artigo 50 é uma cláusula do tratado da UE que descreve as medidas que um país membro deve tomar para sair da União Europeia. Grã-Bretanha. Beta é uma medida da volatilidade, ou risco sistemático, de um título ou de uma carteira em comparação com o mercado como um todo. Um tipo de imposto incidente sobre ganhos de capital incorridos por pessoas físicas e jurídicas. Os ganhos de capital são os lucros que um investidor. Uma ordem para comprar um título igual ou inferior a um preço especificado. Uma ordem de limite de compra permite que traders e investidores especifiquem. Uma regra do Internal Revenue Service (IRS) que permite retiradas sem penalidade de uma conta IRA. A regra exige that. How para calcular médias ponderadas móveis em Excel usando suavização exponencial Análise de dados do Excel para Dummies, 2nd Edition A ferramenta Exponential Smoothing no Excel calcula a média móvel. No entanto, a suavização exponencial pondera os valores incluídos nos cálculos da média móvel de modo que os valores mais recentes tenham um maior efeito sobre o cálculo médio e os valores antigos tenham um efeito menor. Esta ponderação é realizada através de uma constante de alisamento. Para ilustrar como a ferramenta Exponential Smoothing funciona, suponha que você volte a olhar para a informação diária média de temperatura. Para calcular médias móveis ponderadas usando suavização exponencial, execute as seguintes etapas: Para calcular uma média móvel exponencialmente suavizada, clique primeiro no botão de comando Dados da análise de dados tab8217s. Quando o Excel exibe a caixa de diálogo Análise de dados, selecione o item suavização exponencial da lista e, em seguida, clique em OK. O Excel exibe a caixa de diálogo Suavização exponencial. Identificar os dados. Para identificar os dados para os quais você deseja calcular uma média móvel exponencialmente suavizada, clique na caixa de texto Input Range. Em seguida, identifique o intervalo de entrada, digitando um endereço de intervalo de planilha ou selecionando o intervalo de planilha. Se o intervalo de entrada incluir uma etiqueta de texto para identificar ou descrever os dados, marque a caixa de seleção Etiquetas. Fornecer a constante de alisamento. Insira o valor da constante de suavização na caixa de texto Fator de amortecimento. O arquivo de Ajuda do Excel sugere que você use uma constante de suavização de entre 0,2 e 0,3. Presumivelmente, no entanto, se você estiver usando esta ferramenta, você tem suas próprias idéias sobre o que é a constante de suavização correta. (Se você não sabe sobre a constante de suavização, talvez você não deveria usar esta ferramenta.) Diga ao Excel onde colocar os dados de média móvel suavemente expondo. Use a caixa de texto Range de saída para identificar o intervalo de planilha no qual você deseja colocar os dados de média móvel. No exemplo da folha de cálculo, por exemplo, coloque os dados de média móvel no intervalo de folhas de cálculo B2: B10. (Opcional) Diagrama os dados exponencialmente suavizados. Para traçar os dados exponencialmente suavizados, marque a caixa de seleção Saída do gráfico. (Opcional) Indica que você deseja que as informações de erro padrão sejam calculadas. Para calcular erros padrão, marque a caixa de seleção Erros Padrão. O Excel coloca valores de erro padrão ao lado dos valores de média móvel exponencialmente suavizados. Depois de concluir especificando quais informações de média móvel você deseja calcular e onde deseja colocá-las, clique em OK. O Excel calcula as informações da média móvel.
No comments:
Post a Comment